A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from questions where a banded mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

Section A

	01100	stion	Marking details			Marks a	available	1	
	Quea	Stion		AO1	AO2	AO3	Total	Maths	Prac
1.			$C_6H_5NH_2$ or other primary aromatic amine	1			1		
2.			$\bigvee_{\substack{N \\ U \\ U \\ U \\ U}} H$	1			1		
3.			melts over a range of lower temperatures	1			1		
4.			total peak area excluding compound D is 96 – equivalent to 80 % peak area compound D (20%) is 96 / 4 = 24		1		1		
5.			phenylmethylamine / benzylamine		1		1		
6.	(a)		nucleophilic addition	1			1		
	(b)		butanal		1		1		
7.			C ₆ H ₆		1		1		
8.			least soluble B A D C most soluble		1		1		
9.			2-methylpropan-1-ol		1		1		
	<u> </u>	<u> </u>	Section A total	4	6	0	10	0	0

Section B

	Ques	stion	Marking details	s Marks availab			Marking details Marks available		
				A01	AO2	AO3	Total	Maths	Prac
10.	(a)		C ₉ H ₂₀		1		1		
	(b)		use of a catalyst will not affect the enthalpy change of reaction (1) Hess's law states that the overall enthalpy change is independent of the pathway taken (1)	2			2		
	(c)		H H H Br - C - C - C - C O O H (1) this compound does not contain a chiral centre / an asymmetric carbon atom (which would give rise to enantiomers) (1)			1	2		
	(d)		propenoic acid contains a C=C bond at 1620-1670 cm ⁻¹ (not present in 3-oxetanone) (1) propenoic acid contains an O–H bond at 2500-3550 cm ⁻¹ (not present in 3-oxetanone) (1)		2		2		

	0	tion	Marking datails			Marks a	vailable		
	Ques	uon		A01	AO2	AO3	Total	Maths	Prac
10.	(e)		M_r sodium propenoate94.0 (1)moles of propenoic acid = $\frac{38.3 \times 1000}{72.0}$ = 532 \therefore moles of sodium propenoate = 532 \therefore mass of sodium propenoate = 532×94.0 = 50.0 (kg) (1)alternatively M_r sodium propenoate = 94.0 (1)mass of sodium propenoate = $\frac{38.3 \times 94.0}{72.0}$ = 50.0 (kg) (1)		2		2	1	
	(f)		$ \begin{array}{c c} H & H \\ $		1		1		

	Question		Marking details			Marks a	vailable		
	Que	511011	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10.	(g)		for example $CH_2=CHC \xrightarrow{0} O \xrightarrow{0} O$		2		2		
	(h)		 any three valid considerations for (1) each up to max 3 for example cost of propane v cost of propene yield of propenenitrile in each method effectiveness of catalyst(s) 			3	3		
			Question 10 total	2	8	5	15	1	0

	0	stion		Marking dotails			Marks a	vailable		
	Que	SUOT			AO1	AO2	AO3	Total	Maths	Prac
11.	(a)	(i)		butane-1,4-diol / butan-1,4-dial (1)		1				
				acidified potassium dichromate / H^+ , $Cr_2O_7^{2-}$ (1)	1			2		1
		(ii)	1	7 mol glucose give 12 mol butane-1,4-dicarboxylic acid (1) 7 × 180 g glucose give 12 × 118 g butane-1,4-dicarboxylic acid ∴ 1 g glucose gives 12×118 g butane-1,4-dicarboxylic acid (1) 7×180 = 1.12 (kg) (1) or 7 mol glucose give 12 mol butane-1,4-dicarboxylic acid (1) 1 mol glucose gives 12/7 mol butane-1,4-dicarboxylic acid = 1.71 mol moles glucose used = 1000/180 = 5.56 moles butane-1,4-dicarboxylic acid obtained = 1.71 × 5.56 = 9.51 (1) ∴ mass of butane-1,4-dicarboxylic acid = 9.51×118 = 1.12 kg (1) 1000		3		3	3	
			II	carbon dioxide is used and this helps to reduce the greenhouse effect			1	1		

PMT

	Question		Marking details	Marks available							
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
11.	(b)	(i)	mass $H_2SO_4 = 294 \text{ g}$ (1)								
			volume $H_2SO_4 = 160 \text{ cm}^3$ (1)		2		2	2			
			ecf possible								
			award (2) for cao								
		(ii)	e.g. reflux for longer (1)								
			use stronger / weaker / more aqueous sulfuric acid (1)			2	2		2		
		(iii)	there will be less dipole / dipole forces between molecules of								
			therefore less energy (1)								
			will be needed to separate them / overcomes these								
			2-methylfuran (1)		3		3				
		(iv)	absorption strongest around 430 nm in the blue-violet (1)			0	0		0		
			low absorption for yellow / In the green to orange region (1)			2	2		2		
			Question 11 total	1	9	5	15	5	5		

	0.00	otion	Marking dataila			Marks a	vailable		
	Que	Stion		AO1	AO2	AO3	Total	Maths	Prac
12.	(a)	(i)	C ₆ H ₅ –CH(COOH)–NH–C(O)CH(NH ₂)C ₆ H ₅		1		1		
		(ii)	$C_{6}H_{5} - CH_{2} - C - COOH$ H		1		1		
	(b)		3-phenylpropanoic acid has largely van der Waals forces between molecules (1) hydrogen bonding between the acid groups has only a limited effect as these are a small part of a larger molecule, therefore melting temperature is relatively low (1) in 3-phenyllactic acid the hydrogen bonding has a greater contribution to the overall intermolecular bonding as both –OH and –COOH groups can participate, therefore its melting temperature is relatively higher (1) phenylalanine exists as a zwitterion structure as a solid this structure has a strongly bonded ionic style lattice and therefore its melting temperature is much higher / very high (1)		1	1	4		

	0	stion	Marking datails			Marks a	available		
	Que	Stion	iwarking details	AO1	AO2	AO3	Total	Maths	Prac
12.	(C)	(i)	Tollens' (1) silver mirror with phenylethanal but no change with phenylpyruvic acid (1) accept Fehling's test or sodium hydrogencarbonate test	1	1		2		2
		(ii)	2-phenylethanol M_r 122 122 – 91 \rightarrow 31 (1) (loss of 31 could be CH ₂ OH ⁺), fragment could be C ₆ H ₅ CH ₂ ⁺ (1)			2	2		
		(iii)	reagents used are I ₂ /NaOH or NaOCI/KI (1) yellow solid forms (1)	1					2
			present (1)	1 2	5	1	3	0	2
					5	5	13	0	4

	0	stion	Marking dotails			Marks a	vailable		
	Que	Stion		AO1	AO2	AO3	Total	Maths	Prac
13.	(a)		benzene-1,4-dicarboxylic acid / terephthalic acid		1		1		
	(b)		bond between the chlorine atom(s) and the ring is strong(er) (1) because of the interaction of chlorine's lone pair of electrons with the π -electron system of the ring (1)	2			2		
	(c)		e.g. $AlCl_3 / FeCl_3 / Fe$ (1) + $2Cl_2 \rightarrow$ + $2HCl$ (1)	1	1		2		
	(d)	(i)	purple solution	1			1		1
		(ii)	white precipitate / solid (1)	1					0
			2,6-dibromo-4-chloro-3,5-dimethylphenol (1)		1		2		2
		(iii)	$\begin{array}{l} \mbox{PCMX} \rightarrow C_8 \mbox{H}_9 \mbox{ClO} \rightarrow \mbox{M}_r \ 157 \slash 156.6 \ (1) \\ 250 \ \mbox{cm}^3 \rightarrow 12.0 \ \ g \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		2		2	2	
		(iv)	three peaks (1)as there are three different environments for the protons (1)peak areas are: CH_3 protons – 6CH aromatic protons – 2OH proton – 1(1)	1	1	1	3		
		<u> </u>	Question 13 total	6	6	1	13	2	3

	0	otion	Marking dataila			Marks a	vailable		
	Que	Suon		AO1	AO2	AO3	Total	Maths	Prac
14.	(a)	(i)	$CH_3COOH + C_4H_9OH \rightarrow CH_3COOC_4H_9 + H_2O$		1		1		
		(ii)	moles of butan-1-ol 0.20 moles of ethanoic acid 0.15 (1) butan-1-ol is in excess and yield should be based on the CH ₃ COOH (1) from the equation (mole ratio 1:1) 0.15 moles of the ester should be formed = $0.15 \times 116 = 17.4 \text{ g}$ (1)		1	1	3	3	3
		(iii)	CH ₃ COOH is neutralised by sodium hydrogencarbonate (1) giving bubbles (of carbon dioxide) (1)	2			2		2
		(iv)	IR spectrum (1) \rightarrow OH peak at 2500-3550 cm ⁻¹ (1) or mass spectrum (1) \rightarrow molecular ion at m/z 74 (1)			2	2		2

0	unction	Marking datails			Marks a	vailable		
Q	uestion		A01	AO2	AO3	Total	Maths	Prac
14. (<i>t</i>	b)	Indicative content • Mr of cyclohexanone C ₆ H ₁₀ O is 98.1 • % oxygen is 16 × 100 = 16.3 98.1 • this information agrees with the compound suggested • cyclohexanone is a ketone and will be reduced to a secondary alcohol; this does not fit the compound given • cyclohexanone does not contain a C=C and will not therefore decolourise aqueous bromine • cyclohexanone has three proton environments and therefore will not give 6 discrete peaks in the ¹ H NMR spectrum • cyclohexanone has four carbon environments and will give four separate peaks in its ¹³ C spectrum; this does not fit the compound suggested 5-6 marks Correct conclusions relating to all information The candidate constructs a relevant, coherent and logically structured account	3	AUZ	3	6	2	1
		 including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Oxygen content calculated; correct conclusions relating to one reaction and one piece of spectral data The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.						

Question	Marking dataila			Marks a	vailable		
Question		AO1	AO2	AO3	Total	Maths	Prac
14. <i>(b)</i>	 1-2 marks Relative mass of compound calculated; correct conclusion relating to one reaction or one piece of spectral data The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. O marks The candidate does not make any attempt or give an answer worthy of credit.						
	Question 14 total	5	3	6	14	5	8
	Question 14 total	5	3	6	14	5	

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	4	6	0	10	0	0
10.	2	8	5	15	1	0
11.	1	9	5	15	5	5
12.	3	5	5	13	0	4
13.	6	6	1	13	2	3
14.	5	3	6	14	5	8
TOTAL	21	37	22	80	13	20