A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from questions where a banded mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf = error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

Section A

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10.	(e)			M_{r} sodium propenoate $\quad 94.0(1)$moles of propenoic acid $=\frac{38.3 \times 1000}{72.0}=532$$\therefore$ moles of sodium propenoate $=532$$\therefore$ mass of sodium propenoate $=532 \times 94.0=50.0(\mathrm{~kg}) \quad(1)$alternatively$M_{r}$ sodium propenoate $\quad 94.0(1)$ mass of sodium propenoate $=\frac{38.3 \times 94.0}{72.0}=50.0(\mathrm{~kg}) \quad(1)$		2		2	1	
	(f)				1		1			

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
11.	(a)	(i)			butane-1,4-diol / butan-1,4-dial (1) acidified potassium dichromate $/ \mathrm{H}^{+}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	1	1		2		1
		(ii)	I	7 mol glucose give 12 mol butane-1,4-dicarboxylic acid (1) $7 \times 180 \mathrm{~g}$ glucose give $12 \times 118 \mathrm{~g}$ butane-1,4-dicarboxylic acid $\therefore 1 \mathrm{~g}$ glucose gives $\frac{12 \times 118}{7 \times 180} \mathrm{~g}$ butane-1,4-dicarboxylic acid (1) $=1.12(\mathrm{~kg})$ or 7 mol glucose give 12 mol butane-1,4-dicarboxylic acid (1) 1 mol glucose gives $12 / 7$ mol butane-1,4-dicarboxylic acid $=1.71 \mathrm{~mol}$ moles glucose used $=1000 / 180=5.56$ moles butane-1,4-dicarboxylic acid obtained $=1.71 \times 5.56=9.51$ (1) \therefore mass of butane-1,4-dicarboxylic acid $=\frac{9.51 \times 118}{1000}=1.12 \mathrm{~kg}(1)$		3		3	3		
			II	carbon dioxide is used and this helps to reduce the greenhouse effect			1	1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(a)	(i)		$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}(\mathrm{COOH})-\mathrm{NH}-\mathrm{C}(\mathrm{O}) \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{5}$		1		1		
		(ii)			1		1			
	(b)		3-phenylpropanoic acid has largely van der Waals forces between molecules (1) hydrogen bonding between the acid groups has only a limited effect as these are a small part of a larger molecule, therefore melting temperature is relatively low (1) in 3-phenyllactic acid the hydrogen bonding has a greater contribution to the overall intermolecular bonding as both -OH and -COOH groups can participate, therefore its melting temperature is relatively higher (1) phenylalanine exists as a zwitterion structure as a solid this structure has a strongly bonded ionic style lattice and therefore its melting temperature is much higher / very high		1 1	1	4			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13.	(a)			benzene-1,4-dicarboxylic acid / terephthalic acid		1		1		
	(b)		bond between the chlorine atom(s) and the ring is strong(er) (1) because of the interaction of chlorine's lone pair of electrons with the π-electron system of the ring (1)	2			2			
	(c)		$\begin{align*} & \text { e.g. } \mathrm{AlCl}_{3} / \mathrm{FeCl}_{3} / \mathrm{Fe}(1) \\ & ---------\quad+2 \mathrm{Cl}_{2} \rightarrow-----------+2 \mathrm{HCl} \tag{1} \end{align*}$	1	1		2			
	(d)	(i)	purple solution	1			1		1	
		(ii)	white precipitate / solid (1) 2,6-dibromo-4-chloro-3,5-dimethylphenol (1)	1	1		2		2	
		(iii)	```PCMX }->\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{9}{}\textrm{ClO}->\mp@subsup{\textrm{M}}{\textrm{r}}{}157/156.6 (1 250 cm}\mp@subsup{}{}{3}->12.0\textrm{g}\quad\therefore1000\mp@subsup{\textrm{cm}}{}{3}->48.0\textrm{g molar concentration = 48.0/157=0.307(mol dm}\mp@subsup{}{}{-3} \\ ecf possible award (2) for cao```		2		2	2		
		(iv)	three peaks (1) as there are three different environments for the protons (1) peak areas are: $\quad \mathrm{CH}_{3}$ protons - 6 CH aromatic protons - 2 OH proton - 1	1	1	1	3			
			Question 13 total	6	6	1	13	2	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14.	(a)	(i)		$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{9}+\mathrm{H}_{2} \mathrm{O}$		1		1		
		(ii)	moles of butan-1-ol 0.20 moles of ethanoic acid 0.15 (1) butan-1-ol is in excess and yield should be based on the $\mathrm{CH}_{3} \mathrm{COOH}$ (1) from the equation (mole ratio 1:1) 0.15 moles of the ester should be formed $=0.15 \times 116=17.4 \mathrm{~g}$ (1)		1 1	1	3	3	3	
		(iii)	$\mathrm{CH}_{3} \mathrm{COOH}$ is neutralised by sodium hydrogencarbonate (1) giving bubbles (of carbon dioxide) (1)	2			2		2	
		(iv)	```IR spectrum (1) }->\mathrm{ OH peak at 2500-3550 cm-1 (1) or mass spectrum (1) }->\mathrm{ molecular ion at m/z 74 (1)```			2	2		2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14.	(b)			Indicative content - M_{r} of cyclohexanone $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ is 98.1 - \% oxygen is $\frac{16 \times 100}{98.1}=16.3$ - this information agrees with the compound suggested - cyclohexanone is a ketone and will be reduced to a secondary alcohol; this does not fit the compound given - cyclohexanone does not contain a $\mathrm{C}=\mathrm{C}$ and will not therefore decolourise aqueous bromine - cyclohexanone has three proton environments and therefore will not give 6 discrete peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum - cyclohexanone has four carbon environments and will give four separate peaks in its ${ }^{13} \mathrm{C}$ spectrum; this does not fit the compound suggested 5-6 marks Correct conclusions relating to all information The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Oxygen content calculated; correct conclusions relating to one reaction and one piece of spectral data The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.	3		3	6	2	1

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14.	(b)			1-2 marks Relative mass of compound calculated; correct conclusion relating to one reaction or one piece of spectral data The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of credit.						
			Question 14 total	5	3	6	14	5	8	

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 152

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	4	6	0	10	0	0
10.	2	8	5	15	1	0
11.	1	9	5	15	5	5
12.	3	5	5	13	0	4
13.	6	6	1	13	2	3
14.	5	3	6	14	5	8
TOTAL	21	37	22	80	13	20

